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S1. EXPERIMENTAL TESTS ON STOCHASTIC
EFFICIENCY

The fluctuations of the efficiency of heat engines have
been been characterized in the framework of stochastic
thermodynamics [1–5]. Universal properties of the prob-
ability density function (PDF) [4] of the efficiency and
of its large deviation function (LDF) [2, 3, 6] have re-
cently been established from the application of fluctua-
tion theorems to mesoscopic engines. The experimental
verification of the majority of these results is however
still lacking.

Two of the major theoretical predictions of the effi-
ciency PDF, namely the bimodality of the histogram near
the maximum power output [4] and the power-law tails
[7], have been tested experimentally in Fig. 3 in the Main
Text. In what follows, we review some of the main theo-
retical predictions for the LDF of the stochastic efficiency
and show the experimental test of some of these features
in our Carnot micro engine.

In the limit of large observation times, the efficiency
distribution can be characterized by its LDF. The LDF
of the efficiency fluctuations, Jτ (η), describes the asymp-
totic behaviour of the efficiency PDF when the efficiency
is calculated summing over a large number of cycles

ρ(η(i)τ ) ' e−iJτ (η) , for i→∞ , (S1)

where the subindex τ in Jτ (η) indicates the duration of

the cycle of the engine. Here ρ(η
(i)
τ ) is the PDF of the

efficiency obtained as the ratio of the cumulative sum
of the work W over i cycles over the total heat absorbed
(Q = Q1+Q2+Q3) summed over i cycles. From Eq. (S1),
the LDF of the efficiency can be estimated as

Jτ (η) ' − lim
i→∞

1

i
ln ρ(η(i)τ ) . (S2)
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Introducing the observation time τobs = iτ , we can also
define the LDF in units of inverse time,

Jτ (η) ' − lim
τobs→∞

1

τobs
ln ρ(η(τobs)τ ) . (S3)

In time-symmetric cycles the efficiency LDF has been
found to attain its global maximum at the Carnot value
ηC [2]. In other words, Carnot efficiency is the least
likely efficiency ηmin in time-symmetric cycles: ηsymmin =
ηC . For time-asymmetric cycles like our Carnot engine,
however, an off-Carnot maximum of the LDF has been
predicted theoretically, ηasymmin 6= ηC [3, 6]. In such a
case, the stochastic entropy production ∆Stot vanishes
when averaged over ensembles of trajectories whose effi-
ciency equals to ηC and also when averaged over ensem-
bles of trajectories whose efficiency equals to ηmin [3]:
〈∆Stot〉η = 0 for η = ηC , ηmin.

The first theoretical results on stochastic efficiency
have been obtained under the assumption of Gaussian
work and heat fluctuations [4] or when the joint dis-
tribution of heat and work is smooth around zero [3].
Figure S1 shows that the experimental distributions of
the extracted work and the total absorbed heat can
be approximatively described as Gaussians. Note that
the work distributions at an observation time equivalent
to 10 cycles fit better to a Gaussian distribution than
that heat summed over 10 cycles of the engine. Both

work and heat rate functions ln[ρ
(τobs)
τ (W/τobs)]/τobs and

ln[ρ
(τobs)
τ (Q/τobs)]/τobs collapse to a universal curve for

observation times equal or larger than ∼ 20 cycles (cf.
Fig. 2 in [3]).

The convergence of work and heat PDFs with τobs at
low observation times (∼ 20 cycles) suggests that the effi-
ciency LDF could be accurately estimated by the value of

the efficiency rate function − ln[ρ
(τobs)
τ (η)] / τobs for τobs

of the order of the duration of several tenths of cycles.

Figure S2 shows the value of ln[ρ
(τobs)
τ (η)] / τobs for differ-

ent values of τobs. At observation times corresponding to
10, 20 and 30 cycles our engine attains a minimum of the
efficiency PDF at an off-Carnot value, ηmin ' 2.5 ηC as
predicted by the theory of stochastic efficiency for asym-
metric cycles [3]. Using an extrapolation technique de-
scribed in Sec. S2 we obtain an estimation of the effi-
ciency LDF that lies between the efficiency rate function



2

−10 0 10 20

−10

−5

0

 

 

0 10 20 30 40 50
−6

−4

−2

0

 

 

Q/τobs

W/τobs

ln
[ρ

(τ
o
b
s
)

τ
(Q

/τ
o
b
s
)]
/
τ o

b
s

ln
[ρ

(τ
o
b
s
)

τ
(W

/τ
o
b
s
)]
/
τ o

b
s

(s
−
1
)

(s
−
1
)

(s−1)

(s−1)

FIG. S1: Work and heat fluctuations for the Carnot
cycle of duration τ = 40ms. Top: Work rate function
ln[ρ

τobs
τ (W/τobs)]/τobs as a function of the work scaled by the

observation time. The data is obtained for different obser-
vation times τobs corresponding to 10 cycles (blue squares),
20 cycles (red circles), 40 cycles (green diamonds), 50 cycles
(black ”+”), 100 cycles (magenta up triangles) and 200 cycles
(brown down triangles). Bottom: Rate function of the total
absorbed heat measured at the same observation times. Both
heat and work are measured in units of kTc, with Tc = 300 K
and k Boltzmann’s constant. All the distributions are nor-
malized to their maximum value. The solid lines are fits of
the 10-cycle distributions to a Gaussian distribution.

calculated for 20 and 30 cycles (black curve in Fig. S2).
Note that the entropy production vanishes when aver-
aged over cycles that perform an efficiency equal to ηmin,
as does when averaged over cycles with efficiency equal
to the Carnot value (Fig. S2 bottom, cf. Fig. 3 in [3]).

Figure S3 shows the distribution of the stochastic ef-
ficiency ηloc defined in [1] as the ratio between the work

extracted and the heat absorbed in one cycle, ηloc = η
(1)
τ .

Our experimental result confirms the theoretical predic-
tion for the one-cycle efficiency distribution, which can
be well described by a Cauchy distribution, as predicted
for the case of engines with Gaussian heat and work fluc-
tuations [4].
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FIG. S2: Efficiency large deviation function and mean
entropy production for the Carnot cycle of duration
τ = 40ms. Top: Rate function of the efficiency (normalized
to the maximum value) for different observation times corre-
sponding to 10 cycles (blue squares), 20 cycles (red circles),
30 cycles (cyan stars) and 40 cycles (green diamonds). The
data is obtained using a regular binning from −ηC to 3ηC
with bin size 0.2ηC . The black line is the efficiency LDF cal-
culated using the method described in Sec. S2 and the solid
lines connecting the symbols are obtained with a spline in-
terpolation. Bottom: Mean entropy production as a function
of the efficiency for an observation time of 30 cycles. Mean
entropy production vanishes at η ' ηC and near η ' ηmin.
Here, η ' ηmin is estimated from the minimum of the effi-
ciency PDFs shown in the top figure (vertical cyan line).

S2. ESTIMATION OF THE EFFICIENCY LDF
FROM FINITE-TIME OBSERVATIONS

In experimental time series of a finite duration τexp,

the statistics of ρ(η
(τobs)
τ ) for a large observation time

τobs is limited. The estimation of the efficiency LDF us-
ing Eqs. (S2) and (S3) is therefore subject to possible
statistic shortcomings in the long-time limit. We design
an alternative estimator by extrapolating the rate func-

tion − ln[ρ(η
(τobs)
τ )]/τobs to τobs = ∞ from the efficiency

PDFs ρ(η
(τobs)
τ ) for τobs small, where the statistics is more

robust. Empirically, we find the following finite-time cor-
rection for the LDF,

− 1

τobs
ln ρ(η(τobs)τ ) = Jτ (η) +

B

τobs
, (S4)

as shown in Fig. S4 for η = ηC and η = 2ηC . As
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FIG. S3: Distribution of stochastic efficiency ηloc for
the Carnot cycle with τ = 40ms. Experimental value of
the one-cycle efficiency distribution obtained with a regular
binning of 0.2ηC (black squares) and fit to a Cauchy distri-
bution (black line). The goodness of the fit is R2 = 0.998.
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FIG. S4: Estimation of the efficiency LDF from finite
τobs in the Carnot cycle with τ = 40 s. Rate function of
the efficiency PDF as a function of the inverse observation
time for two different values of the efficiency corresponding
to τobs up to 20 cycles. The LDF is estimated as the y-
intercept of the linear fit of the rate function vs the inverse
observation time (solid and dashed lines). In the data shown
here Jτ (2ηC) > Jτ (ηC).

a result, Jτ (η) can be estimated from the y-intercept

of a linear fit of − 1
τobs

ln ρ(η
(τobs)
τ ) vs 1/τobs. Figure S5

shows the value of the estimator of Jτ (η) obtained using
this method. In the extrapolation, we use the data of
the PDFs ρτ (ητobs) for τobs ranging from 1 cycle period
to τmax = 5τ (yellow crosses), 10τ (blue squares), 15τ
(magenta stars) and 20τ (red circles). Our estimator of
Jτ (η) converges for τmax ∼ 20τ therefore confirming that
the rate function estimation introduced in Sec. S1 is also
an accurate estimator of the efficiency LDF.
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FIG. S5: Efficiency LDF in the Carnot cycle of dura-
tion τ = 40 ms. The data is obtained from linear extrapola-

tion of − 1
τobs

ln ρ(η
(τobs)
τ ) vs 1/τobs using the data of efficiency

PDFs with τobs ranging from 1 cycle to different number of
cycles: 5 cycles (yellow crosses), 10 cycles (blue squares), 15
cycles (magenta stars) and 20 cycles (red circles). The red
curve corresponds with the solid black curve in Fig. S2. Solid
lines are a guide to the eye.
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